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We present details and some test applications of a modified parti-
cle-mesh N-body code that features an autematic, adaptive local
mesh enhancement in regions where enhanced resolution is desir-
able. Improvements in grid resolution can be achieved without sig-
nificant increases in execution time or computer memory. A single
subgrid can more than halve the execution time and use less than
17% of computer memory used by an equivalent single grid of the
same resolution as the subgrid. The use of two layers of subgrids
(by providing a nine-fold change in resolution} can cover several
density cores and reduce the execution time and memaory require-~
ments by two orders of magnitude from those of a single grid.
Using a relaxation Poisson solver and Neumann boundary values
interpolated from parent grids, adaptive subgrids can follow the
movement of particle subsystems while allowing particles to move
from grid to grid. Execution times are shown to be greatly improved
over single grid methods and competitive with tree code simula-
tions. The multigrid method is ideal for the investigation of dynami-
cal friction, mergers, and tida! stripping of multicomponent stellar
systems in fixed or interacting backgrounds. © 1994 Academic Press, Inc,

1. INTRODUCTION

We present in this paper the details and some simple applica-
tions of a 3D particle-multiple-mesh (PM') N-body code that
features an automatic, adaptive, local mesh enhancement
scheme. Tests and summary reports have been reported earlier
in various workshops and conferences (see e.g. {7, 8, 16, 17]).

The power and usefulness of N-body simulation in the study
of gravitational systems hardly need any emphasis, and the
literature abounds with the resuits of the application of various
codes to astrophysical phenomena ranging from the large-scale
structure of the Universe to stellar clusters. Each code has
its own advantages and drawbacks, and this again has been
extensively discussed in the literature (see, for example, [20]).
Very briefly, the Aarseth-type particle—particle (PP) scheme
offers the' most exact, direct method of solution, but suffers
from the well-known limit on particle number (¥,) due to the
execution time dependence on N3. The particle-mesh (PM)
and the particle—particle—particle~mesh (P*M) methods cir-
cumvent this limitation |14], but they are constrained by grid
resolution and the difficulty of meshing the small-scale calcula-
tions to the large-scale ones [6). Recent developments introduce
significant improvements to the conventional PP, PM, and P°M

schemes. Tree codes [2, 13, 5] recognize that the gravitational
influence of distant particles can be closely approximated by
multipole moments, and thus while one treats the interaction
of a particle with its close neighbours with the direct PP method,
one can regard its interaction with distant ones via many-particle
nodes and not via individual particles. This scheme avoids the
effects of grid resolution and geometry and is gaining rapid
popularity. Different versions differ in how the tree of nodes
1 organised.

Based on the standard PM philosophy, a new hierarchical
particle mesh code (H-PM) has recently been reported [21]
which makes use of a small, simple tree of PM calculations.
Basically, subgrids are built within a main grid and with the
allowance for particle mass difference in different grids, beth
the dynamical range in mass and length can be dramatically
increased. We will compare Villumsen's approach with ours
in Section 2. Multigridding methods have been used extensively
in aerodynamics and smooth-particle-hydrodynamics simula-
tions [12, 3, 18]. These systems often have complicated geome-
tries and great improvements have been made in handling grids
that match both the physical geometry of the boundaries and
the expected fluid behaviour [19]. Unconnected grids, another
form of multigridding, have been used by James and Weeks
[15] to study the interaction of separated galaxies. Each galaxy
is surrounded by a grid and the interaction is calculaied by the
use of boundary corrective charges.

Couchman 9] uses multigridding to improve the perfor-
mance of the PPM method. Instead of using refined grids to
improve the resolution of the grid-derived potentials and forces,
he uses refined chaining grids to solve the short-range forces
on the particles. Refined potential and force grids are used to
calculate the forces on those particles that no longer lie in the
same refined chaining mesh cell. Due to the complications of
coding that would ensue, Couchman uses this method rather
than using refined grids with boundary conditions containing
the long-range force information.

Our code does what Couchman’s did not do; it uses the
boundary conditions of the refined grids to supply the force
components from the rest of the simulation system. It is also
close in spirit to Villumsen's, since both are based on the
standard PM philosophy. Ours, however, allows for automatic,
adaptive, hierarchical local mesh enhancernent, making it possi-
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ble to attain the desired high resolution in only specific regions
of interest, an obvious advantage for such problems as cosmo-
logical large-scale clustering and the evolution of galaxies and
star clusters. In our scheme, a coarse mesh is employed for the
whole computational box, and the potential is solved by stan-
dard potential solvers. We implement the alternating direction
implicit (ADI} method, thus rendering the code particularly
appropriate for, say, the study of isolated systems without peri-
odic boundary condittons, such as galaxies and star clusters.
The AIM solver also frees us from the need to have computa-
tional cubes that are integral powers of 2 or 3 in size. In the
smaller regions with refined meshes, the potential equations
are solved with the required boundary conditions interpolated
from the covering mesh. Each particle is then moved with the
appropriate force over the global time step.

The details of the basic features and technical aspects of our
code are presented in Section 2 of this paper. Various tests
performed on the code are reported in Section 3, as well as
simulations of dynamically evolving systems. Conclusions,
summary, and plans for future work are given in Section 4.

2. MULTIGRID HIERARCHIES

The use of discrete grids to solve the field equation for the
N-body problem has one great limitation. The grid imposes
artificial characteristic lengths that restrict the range of sizes
of the structures that develop. The structures are confined to
the size of the grid, and the mesh spacing imposes a softening
length that suppresses the formation of small systems [4, 6].
The simplest sclution is to use yet finer meshes to increase the
yange, at the expense of greater computational time. However,
even with the largest and fastest of computers the limit is a
computational cube with about 256 grid nodes to a side.

The advantage of grid-based computational methods is that
the force evaluation times vary no more strongly than linearly
with particle number. However, the time to calculate forces
varies as N} log, N,, where N, is the number of cells in each
dimension. While the density assignment, force interpolation,
and pusher times are linear with ,. Ideally &; should be chosen
to vary linearly with N,, so that the overall execution time
should vary as N, log, N,. However, clumpy systems lead to
great wastage of grid nodes in the low density regions.

By layering a set of subgrids over the main grid, improve-
ments to the resolution can be made without the otherwise
attendant N; log, N, increase of computational time. However,
in many astrophysical problems, the system is not in equilibrium
and the regions of interest move. Adaptive grids that change
size and move with the density profile result in improved force
calculations where needed. The grid positions must be stored
and recaiculated periodically as the simulation develops. Care
must be taken in choosing an algorithm for calculating the new
grid node positions to balance the decrease in mesh spacing with
the increase of density; otherwise a strong tendency exists for
the nodes to over-concentrate in the regions of highest density.
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Villumsen {21] has devised a maultigrid code in order to
handle cosmological simulations. In the nested cubic grids the
particle number densities are the same; in each grid there is
the same average number of particles per cell. As a particle
from a coarse grid passes into a fine gnd it is replaced with a
swarm of smaller particles. The swarm of particles and the
“‘parent’’ particle are evolved independently and if the ‘‘par-
ent’’ paiticle leaves the region of the subgrid then the swarm
is removed smoothly. The forces for the subgrid particles are
obtained by adding the internal field from the fine grid to the
external field from the coarse grid. In order that the masses of
the subgrid not be double-counted, the coarse grid potential
must be re-solved with zero density in the region of the subgrid.
This hierarchy can be extended to as many subgrids as neces-
sary, but each subgrid has the same size and shape as the main
grid. One advantage of this approach is thai the subgrids can
overlap, as they do not interact in any way. A ‘‘parent’’ particle
that enters two subgrids creates a swarm in each. The FFT
Poisson solver is used throughout and several numerical tricks
are used to increase its speed for the non-periodic subgrids.
We note, however, that in this scheme all the subgrids are the
same size; they are all cubes of, for example, 64° nodes. Hence,
an elongated structure must be covered by several subgrids.
Also, each grid that has subgrids must have the potential solved
again for each subgrid and the solution of the potential fields
is the most time expensive step in the scheme.

The ideal multigrid method can handle any number of grids,
up to computer limitations, over several moving density peaks
of any complicated geometry. However, constraints of code
complexity lead to several limitations. For example a large-
scale-structure mode! for the universe that develops voids will
have irregular sheets and ropes of high density that cross the
simulation space. Such a simulation will require that the refined
grids abut each other as they try to follow the density contours.
If rotation of the grids is allowed for better coverage, then
overlap of fine grids must be considered. The resulting boundary
conditions and bookkeeping become very complicated, since
the particles cannot be identified as belonging to a single grid.
The simplest algorithm, and the one we adopt here, forbids
rotation and overlap of grids, leading to a tree hierarchy of
grids, as each subgrid is contained totally by its parent grid
and only that grid. The particles can be labeled as belonging
to one grid and can only pass to parent and child grids and to
adjacent siblings.

2.1. Boundary Conditions

The mathematical analysis of the grid forces within each
grid in a multigrid system is no different from that of a single
grid (see, for example. [14]). The interaction between the fields
on the grids occurs via the boundary potentials of the subgrids.
Thus, the subgrids *‘see’’ the potential field solutions of their
parent grids, but there is no interaction in the opposite sense
from subgrid to parent.
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To calculate the boundary potentials, an interpolation process
is needed to take the coarse grid potential values to the fine
grid. The simplest method interpolates the coarse grid potentials
to fine grid boundary potentials, the Dirichlet problem. An
alternative would include Neumann terms to create a mixed
boundary condition, or to eliminate the Dirichlet components
entirely. Control and continuity of derivatives paralle! to the
boundary (the parallel components of the forces) are maintained
by Dirichlet boundary conditions while Neumann conditions
allow continuity of derivatives across the boundary. Continuity
of all derivatives, all forces, along and across the boundary
is desirable, but demanding this leads to an overdetermined
subsystem that cannot be solved in general.

Using Dirichlet conditions, as we do, the form of the interpo-
lation functions can be set by the geometry of the system
and the form of the equations of motion. To establish the
interpolating formulae, we have used polynomial basis func-
tions. In the general case, the interpolation function shouid
have no preferred axis, since there is no reason for the axes of
the subgrids to be parallel to the parent grid. However, if the
grids have consistent orientation and the grid boundaries are
constrained to lie on coarse grid planes, no cross-boundary
terms are required. We will adopt the constraint of consistent
orientation but not require the boundary to coincide with a
coarse grid plane. Maintaining the constraint of orientation, our
studies have found that linear interpolation perpendicular to
the boundary is satisfactory, especially when boundary zones
(to be discussed below) are incorporated. The interpolation
order on the surface of the boundary can be obtained by consid-
ering that the force field is the gradient of the potential field.
It is desirable that the interpolation maintain continuity of at
least that derivative. This requires a second-order interpolation
function, since a first-order function is at best piece-wise contin-
uous in that derivative.

Further specification depends on the force interpolation func-
tion and on the finite difference scheme chosen. A common
group of interpolation functions, based on Bessel functions has
been shown (0 maintain conservation of momentum [14]. In
the second-order method, the CIC (cloud in cell) function with
second-order difference operators, the force at a coarse grid
point is defined by the potential difference of the neighbouring
points. The matching of fine grid potential on the boundary
and the finear form of the CIC interpolation leads to a third-
order Hermite polynomial.

The main problem with the multigrid system is with this
fitting of the potentials across the boundary, as is evidenced
by the need to choose the direction of continuity of forces in
the boundary. Consider that the parent grid potentials on the
coarse grid are an approximation of the correct potential with
a resolution scale /. This approximation is interpolated onto
a system with another resolution scale h, h = H/n with n =
2. The result is that the forces near the boundary have two
undesirable properties. The first is the aforementioned discon-
tinuity of the force across or within the boundary. Second,
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there can be strong spurious fluctuations in the fields in
the subgnid.

The second problem arises from two causes: the non-ideal
interpolation functions, and the presence of particles near the
boundary. Interpolation functions are polynomials of finite or-
der but ideally need to be able to model the 1/r form of the
potential function. Thus, even if the potentials on the coarse
grid were the analytically correct potentials, the interpolation
function will, in general, give fine grid potential values that
are incorrect for the intermediate points, This leads to errors
with a characteristic length of about the coarse grid spacing.

More importantly, if an isolated particle wanders near a
boundary, it will see an *‘image particle’” on the other side of
the boundary since the smoothing length changes discontinu-
ously at the boundary. The potential well around a particle has
a rounded cusp and the depth of the well depends on the degree
of this rounding. This presents no problem on a single grid
since this is the normal softening scale that suppresses particle
interactions within the smoothing scale. However, if a particle
sits near a boundary, this rounded cusp of the coarse grid
will be transferred to the fine grid boundary values. Since the
resolution has changed, the scale of the rounding is wrong, and
more importantly the potential well is not deep enough. The
effect of elevating the potential next to the particle is similar
to the introduction of an image charge in a corresponding
electrical system.

These problems can be eliminated by using a grid larger than
the region of interest. This is necessary in any case, since the
force at the edge ot a grid is not defined and the width of the
interpolation function means that a particle cannot obtain its
forces from the subgrid unti! it moves sufficiently far onto the
grid that it does not look to the grid boundary for forces. A
widened boundary zone, henceforth called the buffer zone, is
created which is not used for the calculation of forces. However,
widening the buffer zone exacerbates the problem of the force
discontinuity experienced by the particles when they do cross
its inner boundary. This inner boundary has no significance to
the calculation of force fields, but it is used for labeling the
particles so that it need not be an abrupt transition buf can be
broadened into a continuous change over a transition zone. By
creating a linear transition from coarse grid to fine as the particle
crosses the transition, the discontinuity of forces can be elimi-
nated.

Most systems do not allow for periodic boundary conditions
on the main grid. Thus, Dirichlet conditions are also set for
this grid, and these same problems will also exist on the main
grid if the boundary conditions are specified algebraically. For
example, if the boundary potentials are calculated from a
multipole expansion of an isolated system, then if any particle
approaches the boundary, it will see a very strong negative
mass image. The result can be very strong, with particles being
accelerated strongly and leaving the grid on the opposite side
at high velocity. This problem can be minimized by creating
a tree of multipole expansions from which the boundary poten-
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tials are calculated, in the same way that a tree of multipole
expansions is used by tree codes.

The fine grid now has three regions. The bulk of the grid is
treated as any other grid. The buffer zone is the region in which
the short-range force errors due to the interpolation érrors and
close particles are strongest. In this zone, the particles are
pushed by the forces from the coarse grid so that the particle
does not see the fine grid forces and errors, but the particles
are identified with the fine grid since they are needed to calculate
the necessary density field. The third, or transition, zone
smooths the transition from the coarse grid to the fine grid. It
is essential that the program keep track of which particles are
in these zones, since they are needed for the fine grid’s density
but they obtain their forces partially from the coarse grid.

Our experiments have shown that the width of the buffer
zone should be measured, as might be expected, in units of the
coarse grid resolution. The erroncous field fluctuations on the
boundary die away quickly within the distance of two coarse
grid spaces. The transition zone should be wide enough that
the change does not cause disruption of subsystemns that cross
it, but otherwise it shouid be as small as possible. A total
boundary region, buffer, and transition of two coarse grid inter-
vals and a transition zone width of one fine grid interval is
necessary for the boundary treatment outlined above. The ef-
fects on practical grid sizes are immediately obvious: given
that each grid will not be larger than, say, 32°, and that four
coarse grid zones of the finer grid will not be used, a resolution
increase greater than a factor of 8 is not possible. However, two-
and threefold increases are practical, and order of magnitude
increases can be achteved by nesting grids. In the future, a
more sophisticated boundary treatment that uses the Green’s
form of the grid potential to build the boundary potentials might
allow for a reduction of the buffer zone and improve efficiency.

2.2. Grid Selection

The choice of subgrids is governed by the structures in the
simulation. The need for a finer mesh arises when the current
mesh is not accurate enough to follow the greater fluctuations
in the force field generated by small structures of enhanced
density. The simplest approach uses the density distribution to
generate a criterion field indicating the need for grid refinement.
The subgrid structure is rearranged wherever the current grid
resolution is less or greater than warranted, subject to the restric-
tions on grid orientation and overlap.

The specifics of the operation that generates the subgnids
depend on the type of system under study. For example, a self-
similar criterion-would require that the average particie number
density per grid element be roughly constant. In practice, some
threshold density was specified. If the density exceeded that
value in a region, a subgrid was created around that region.
However, any threshold level that is compared to local density
has the limiation thar a density distribution can always be
created that results in an infinite progression of successively
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finer grids. Moreover, the chosen criterion function must be
sensitive to any real density fluctuations but not so sensitive
that it reacts to the random sampting fluctuations.

The self-similar criterion is very sensitive to this kind of
fluctuation and is not suitable for many systems. For example,
for a constant density spherical system, the V1 standard devia-
tion in the numbers of particles per cell is greater than 0.5 of
the average for any reasonable main grid since there are few
particles per cell. The result is that to eliminate such a criterion
from falsely detecting 1o variations, an excess 69,000 particles
are needed on a 64° grid. It was found that to eliminate unwanted
spurious subgrids, the threshold had to be set above 10g, more
than 8 times the average density. For grid-filling systems, such
as cosmological simulations, the requirements are not as lim-
iting since the local density is closer to the average, but care
is needed if strong density peaks develop. For the simulation
program, we typicaily used a threshold of 16 times the average
density. In future versions an average aver a volume containing
several grid cells will be used to reduce the effects of count-
ing noise.

Any centrally concentrated system that has a power-law den-
sity profile needs more complicated criterion functions, since
they tend to produce an excess of grids. The simplest solution
sets a limit on the number of levels of subgrids, which we
usually set at three, and the required density threshold can be
made to depend on the grid level. Systems like this also require
a higher threshold than others, since otherwise the subgrid
boundaries often lie within the buffer zone of the parent gnid.

2.3. Energy Conservation

Conservaticn of the total energy of the particle system is a
useful tool for checking the reliability of the computer simula-
tion. However, care must be taken in defining the potential
energy, since the particles have accelerations that are based on
a smoothed potential. This is not a problem when only one
grid is used. However, if particles are moving about a set of
many grids, each with a different resolution scale, then the
softening length is not well defined. Indeed, we find in our
stmulations that energy non-conservation of the order of 10%
is not unusual.

In our calculation the potential energy is calculated by

Gm;m—
U=~ 55
Zj (-’”12; + 2 b'd d‘zj)y-

where d; is the softening length of the particle on the grid with
the larger resolution, noting that no overlap of subgrids is
permitted. However, using this equation leads to a computation
time proportional to N7, and even for 53000 particles the time
taken to evaluate this equation once every 20 steps exceeds the
force calculation times. The computational time can be reduced
by randomly selecting a representative subgroup of particles
and calculating its configuration energy. Then the total potential
energy is
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U(N,) = U(N < N,) X 2%

to within statistical fluctvations. By selecting N small enough,
the time saving can be used to calculate (N < N,) a number
of times in order that a standard deviation be calculated and
that the central limit theorem be applied.

It should be noted that this method of calculating [/ employs
a “‘direct”” potential that is not the same as the grid potential
actually used to calculate the forces. The two are not really
coupled and tests have shown that this leads to discrepancies
on the order of 4%.

Also. complications exist when the grid structure itself is
changing with time. In practice the fluctuations due to the
changing grid are on the order of 5%, except for cold collapse
simulations where the extreme changes in scale can cause corre-
spondingly larger changes in the potential energy. However,
all but 1% of this fluctuation is due to this change in 4j; in the
calculation of the energy. For a set of fixed subgrids and an
equilibrium system the energy error is typically 1% over an
entire simulation when 20 random sets of 500 particles are se-
lected.

2.4, The Program

The first program written using adaptive multigridding
needed to be flexible enough to handle all the different tests and
yet not so complicated that afterations required large changes to
the program structure. Thus, the restrictions that allowed a
simple tree of subgrids were imposed and only the simplest
boundary conditions and regridding algorithms were employed,
as described above. A

For simplicity it was decided that subgrid boundaries would
be constrained to lie parallel to the main grid and that no
overlapping of subgrids would be permitted. The selection pro-
cess for regridding is based solely on the density contrast with
a limit of three levels of nesting. An adaptive time-step leap-
frog pusher based on the central density and velocities was
used for the time integration of collapse models. Given that
the program recalculates the positions of the subgrids at periodic
intervals, it is also a simple matter to check the size of the
particle system and to adjust the size of the main grid to follow
global expansions and contractions,

At present a single global time-step that is allowed to vary
with time has been used. The current multigridding scheme
allows the spatial resolution of the force fields to vary with
position, but it does not allow the subgrids to be solved at
different times; the boundary conditions necessary for the po-
tential calculations for the subgrids require that the potentia)
from the entire course grid be solved each time. Given this
requirement, the extra time used to push the particles on the
course grid is not significant. It may be possible in future
versions to decouple the coarse and fine grid potential calcula-
tions and implement a time-step that differs from grid to grid.

A 3D ADI solver was selected to invert Poisson’s equation.

581/115/2-8
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Second-order difference equations are used, including the nine-
point Laplacian star and a two-point ditference for derivatives,
Although CIC is the optimal scheme {11} it was simple to keep
the options of the NGP and TSC schemes. Shaping operators
for CIC and TSC were included [10, 17]. For the subgrids, the
necessary Dirichlet boundary conditions are calculated by a
third-order Hermite interpolation. The particle inlegrator, the
pusher, used was the standard leap-frog. Particle masses are
stored so that different species of particles can be included.

The main grid boundary conditions can be handled by direct
summation of the algebraic potential due to each particle. This
is only practical when the number of particles is small, but it
is necessary for the tests using only a few particles. Normaily,
the main grid boundary potentials are calculated from a
multipole expansion, up to and including quadrupole terms, of
each grid and subgrid. Particles that have left the main grid are
assigned accelerations based on the forces from that
muitipole expansion.

When the simulation consists of a system with a single den-
sity peak, the number of escapees can be controlled by main-
taining a constant ratio of main grid size to system size. It was
found that, like the subgridding criterion, the most appropriate
definition of the system size was based on the density profile.
For spherical systerns, the radius that contained the density
contour of # of the average density within the half-mass radius
satisfied the need to contain the whole system without becoming
excessively large as individual particles escaped. Since the
initial ratio of system size to grid size is maintained, control
on the actual size of the main grid is made in the specification
of the initial grid size.

2.5. Implementation

The program was developed on a pVAX 1l using VAX
Fortran, but it has been modified for use on an IBM mainframe
and UNIX-based machines for execution, While Fortran has
no recursive abilities nor pointers, the ability to pass array
dimensions simplified the procedure and function definitions.
The lack of recursion was handied by writing a function that
tracked the progress of a pointer (and the pointer to the last
considered node) through the tree of grids so that iteration could
be employed. The indexing of grids and particles uses integers.

Lists of particles are used in order to reduce the need to
check all the particles against all the grid boundaries each
time a density field is calculated, or forces are interpolated to
particles from a grid. The particle list must be scanned three
times at the beginning of each time step in order to allow for
all possible movements of particles from grid to grid.

Since standard Fortran has no capability for dynamic alloca-
tion and pointers, integers are used to index arrays that must
be defined to be large enough to handle all expected conditions.
Also, Fortran has no structured variables, so the grid values
are stored on different arrays but grouped in a common block.
In order to simplify programming, the grid tree and all linked
lists start with dummy nodes.
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The ability of Fortran to redimension arrays as they are
passed into subroutines alleviates the worst of the problems
that result from the lack of dynamic allocation. The resolution
and retative dimensions of the grids change as the simulation
proceeds, so the memory space required for each grid is not
known beforehand. It would be prohibitive to assume some
maximurn array size, since this would be at least 65° nodes.
More fiexible and efficient use of memory is achieved by using
a very primitive stack that allocates space from a single large
linear array.

In testing the prograrm it was found that the truncation and
interpolation errors were large enough that double precision
real variables were not warranted. The increased computation
speed and halving of memory requirements that this meant also
permits larger grids and smaller time-steps,

Subroutines that tracked the use of CPU time by each task
were written into the program and at the end of execution, the
program stores the accumulated times into a file for study. As
expected, the execution rimes of the pushers, density assign-
ment, force interpolation, linked list overhead, and output rou-
tine times all vary linearly with particle number. Similarly,
the boundary value, Poisson solvers, and linked list routines
depend linearly with the number of grids, while the density
assignment and force interpolation routines vary with the
number of grids to some power less than ope. Typical values
for each operation are shown in Table [. The totals show
a typical run time of 47 s/time-step for 1000 particles on
the uVAX for a multigrid system while the comparable
single grid took almost three times longer at 137 sftiime-
step. The MIPS 120 reduces these times by an order of
magnitude. The 2000 particle system of two interacting
Plummer spheres with adaptive time-step and regridding upon
a main grid of 41 X 25 X 25 took only 20.6 s/time-step
on that machine. Increasing the particle number to 10,000
added only 2.0 sftime-step.

3. CODE TESTING

3.1. General

The validity of the code depends on the correctness of the
basic method and the accuracy of the various key components,
and in the final analysis it is confirmed only when simulation
of the test systems yields results agreeing with those available
from other methods. We have not carried out a rigorous
error analysis of all aspects of the code. However, the very
good qualitative agreement in our various tests gives us
confidence in the basic soundness of our multigrid scheme.
We present in this section a concise summary of these tests,
while deferring to later work for more rigorous quantita-
tive analysis.

The calculation of the various fields and the particle forces
in our ceode is no different from that of any other PM scheme
as long as the region of interest is more than about two cells
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TABLE 1
Program Run Times on a pVAX 11

Times®
Operation Aclion Dependences® Single Multi
PUSH Calculate the next  Np 0. 0.12
set of particle
vectors
DENSITY Get the grid Np X G*¢ .61 1.1
dengsities
BOUND Calculate Ng? X G 2.1 2.5
boundary
potentials
FIELDS Solve Poisson G % Ng’log; Ng 120 30.
equation
FORCES Interpolate forces  Np® X G- 1.4 2.3
LISTS Update linked Np X G 0.10 0.15
lists
OVERHEAD Misc. 0.006  0.006
SIMULAT Simulation Np 0.60 3.1
dependent
routines inc.
regridding
adaptive
time-step
CONTROL Caleulate e 12 8.3
emergies,
momenta, and
moments
QuUTPUT Write particle N+ d Q.10 Q.12
data and
control
guastities
Total 137 47

“Np—no. of particles. Ng—no. of grid nodes across a grid. or the main
grid. G—no. of grids.

® Average CPU time per time-step on a uVAX II for a Plummer model
system of 1000 particles with adaptive gridding, variable time-step. and output
every 10 cycles. on a single 33° grid, or a multigrid system with a 17 main
grid (regridding creating a second grid) measured in seconds *5%.

“The values a, b, ¢, d depend on the simulation: a and b depend on the
distribution of particles among the grids and boundary zenes; ¢ and d depend
an the frequency with which output is performed.

4This operation should be strictly linear with the particle number, except
for the potential energy which is quadratic, In order 1o eliminate the quadratic
effect, an approximation based on a sample of 500 particles is taken. Since
this calculation stiit dominates the time, the overall time required is almost
independent of the number of particles, and it is controlled by the frequency
of output.

away from the grid boundary. This is illustrated in Fig. 1, where
the potential of a single particle is plotted as a function of the
distance in grid cell units. In Section 2 we have already pre-
sented special ways of handling regions within two cell units
of the boundary, specifically the introduction of the buffer and
transition zones. With these provisions, results from various
tests agree tn general with what is to be expected.
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FIG. 1. Potential field about a unit charge on a unit grid. The points are the grid potentials, while the three lines are the analytic curves —r™', —(r* +

a?)™*, and the piecewise —r' if r > ¢ —2/c + rfc? if r < c. Marching the depth of the well requires that @ = 0.31 and ¢ = 0.63. The piecewise function
is a better fit. Also, most of the spread due o angular variation dies away within two grid cells of the particle.

3.2, Tests of Components in the Code

Results of preliminary testing had been reported elsewhere
[ 7], but some will be mentioned here again for sake of complete-
ness. The effects of subgrid boundary conditions on single and
two particle systems were studied. It was these tests that re-
vealed the need for the buffer and transition zones. Despite the
fact that cubic interpolation in the surface of the boundary
would be generally more accurate, it was found that the time
expense of cubic interpolation normal to the surface could not
be justified by any increase in accuracy, so we used linear inter-
polation.

One might expect that the coarse grid potential field approxi-
mation would be accurate enough that the potential field on the
fine grid would fit smoothly on the subgrid boundary. However,
early results with collapsing spherical systems revealed a dis-
continuity in the forces normal to the boundaries. The Dirichlet
boundary conditions ensured the continuity of the components
along the surface but not of the normal component. The result
was a separation of the particle system into a cubical core and
an envelope with a cubical inner boundary. If the volume of
significant density came close, within two coarse grid zones,
to the boundary, the system evolved into a cubical structure,
even when the bulk of a spherical model resided on the inner
grid. The addition of a buffer zone and a transition zone (dis-
cussed above) solved these problems at the expense of a larger
grid, and errors introduced by the multigridding were reduced

to the same order as those due to the truncation errvors of a
single grid.

3.3. Steady State and Equilibrium Tests

The easily implemented isolated binary system is no easier
for grid methods to evolve than any large N, system and it
has the advantages of having an analytic solution and many
conserved quantities for comparison. The details have been
reported [ 7], and we will simply mention here that a comparison
between a single 17° grid, a 9* grid, and a 13 C 9° (13* within
a 9% grid system showed stability for as long as the minimum
particle separation was greater than four grid spacings. Further-
more, while momenta are well conserved in all cases (~1 part
in a million), energy conservation and shape of the orbit requires
good resolution. In this context, the 13° C 9° calculations yield
results comparable to those obtained with the single 17° while
requiring about half the time.

Stability of equilibrium models was tested using Plummer
spheres, a well-studied stable configuration with a density pro-
file given by

- (1) M__ 1
PO = \an ) R T+ iR

where M is the cluster mass and R is the Plummer radius; 5 X



346

1 particles were used, with M = | and R = 0.2. The evelution
was followed on a single 33* grid, an adaptive system on a 17°
main grid, and an adaptive system on a 33* main grid. The
subgrids doubled the grid resolutions for these simulations.
These runs demonstrate clearly the importance of grid resolu-
tion and suitable choice of time steps in producing reliable
results. The high density core would tend to expand unless
the discretization scale or the softening length (i.e., the grid
resolution) is much less than the characteristic scale of the
system. It was found that the high density core must be covered
by at least four grid meshes. An inappropriate choice of time-
step, on the other hand, gave rise to unrealistic expansion that
actually looks like an exploston. )

Overall, the final system evolving from the Plummer models
varies little among all three simulations. Good momentum con-
servation was observed in all cases, staying on the same order
as the original non-zero momentum due to the random process
of particle placement. The 33° multigrid run conserved energy
to 0.6%, compared with 3.1% for the single 33° grid, after
taking the statistical sampling fluctuations into account. As
shown in Table I, the 33° single grid system required 137 s for
each time-step while the 17? system was almost 3 times faster,
requiring only 47.

3.4, Dynamical Tests and Relaxation ro Equilibrium

Dynamical tests were performed by following the collapse
of a perfectly cold (zero initial velocity dispersion) spherical
system. This tested all aspects of the code, including in particu-
lar the handling of particles moving between grids. Further-
more, the obvious disparity between the symmetry of the physi-
cal system (spherical) and that of the code (cubic) would expose
any undesirable, spurious grid-induced effects.

First the cold collapse of a spherical homogeneous system
was modelled; 4 X 10* particles of equal mass and zero initial
velocity were randomly distributed within a sphere. The evolu-
tion was followed on a single 33° grid, as well as 17 C |7*
grid. Over a time interval of 10° time steps, covering one
complete collapse and a subsequent re-expansion, there are
very good qualitative agreements between the two simulations.
However, the double grid simulation ran 3 times faster. Simula-
tion runs without the use of adaptive time-steps and grid sizes
led to chaotic systems in which energy conservation is grossly
violated and grid geometry was imprinted on the particle distri-
bution.

A more realistic system than the spherical homogeneous case
is one in which the initial density falls off as ~'. In this case,
2 X 10° particles were used. The collapse was marked by the
formation of radial clustering which developed in the postcol-
lapse system as a prolate ellipsoidal bar with axis ratios of
[.0:1.1: 1.6 (Figs. 2 and 3) in reasonable agreement with the
results of Aguilar, Merrirt, and Duncan [1] and those obtained
from a direct PP calculation. As the system evolved, the code
automatically responded by placing a second subgrid layer.

JESSOP, DUNCAN, AND CHAU

Moreover, the subgrid resolution was improved so that at the
time of greatest contraction the central resolution was 9 times
that of the main grid, and 4.5 times that of the initial subgrid.
As shown in Fig. 2, the energy error after 3.6 time units was
12% while the maximum excursion was 32%. While these
errors seem large, and are larger than usual, most of this is
accounted for by the changing subgrid resolution for reasons
described previously. Figure 3 shows both the initial system
and three axial projections of the final particle and grid system,

A comparison test was performed on a direct summation N?
code. For 2000 particles the execution times were very similar.
The evolution of the system was very similar to that of the
multigrid simulation. The final system was an ellipsoid with
axial ratios of 1.0: 1.5: 2.3 (somewhat larger than the multigrid
run), but it was aligned in the same direction as the bar of the
multigrid simulation.

Even though the run-times for this 2000 particle simulation
using both the multigrid method and the direct PP were similar,
we estimate that for a system of 10° particles, it would take 45
s/time-step on a MIPS-120 for the multigrid code, 4 h/time-
step for a single grid with the same resolution and 15 i/ time-
step for the PP. Furthermore, comparison runs wsing 20,000
particles 33’ C 33? grids, the multigrid method was 5.7 times
faster than a treecode algorithm with the corresponding soften-
ing lengths, These timing comparisons are, of course, highly
system-dependent and the above numbers apply only to the
cold collapse system.

3.5. Simulations with Moving Density Peaks

Figure 4 shows the results of the collision of two Plummer
spheres of 5000 particles each, with R = (.2 and unit mass
each. Both the initial impact parameter and trajectory energy
were set to zero. The initial cluster positions and grid arrange-
ment are shown in the r = 0 scatter plot while the other three
again show the resulting system. The adaptive multigrid rou-
tines immediately identified the two clusters for separate sub-
grids that eventually were replaced by the elongated grid seen
in the second time-frame. After the collision, the system settles
into a long lived prolate system with axial ratios of 1.0:1.1: 1.4,
This is typical of the results of similar merger simulations of
White [22].

Another astrophysical effect of interest is the tidal stripping
of clusters. This type of system provides another good test of
the multigridding process since the density peak moves over
large distances during the simulation. It is a simple matter to
add the background tidal forces explicitly to the time-step
pusher (note that momentunt is no longer conserved).

The first test was the somewhat artificial system of a King
maodel in circular orbit about a large fixed central softened
mass, such that the tidal radius of the cluster distribution is the
tidal radius set by the central background potential. Again a
comparison simulation was performed using direct summation
methods. Both simulations started with 2000 particles orbiting
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about a central object with mass 30 times that of the cluster
and a softening radius equal to the orbital radius of 6.8. During
the evolution, shown in Fig. 5, the subgrids tracked the motion
of the King model. Sitting on a 33+33+ |7 main grid, the
subgrids provided a six-fold increase in reselution. As the simu-
lation progressed, particles were stripped from the outer layers
of the cluster. After one and a quarter orbits, 363 particles had
been stripped from the cluster in the multigrid simulation while
334 had been stripped in the PP direct summation simulation.
Moreover, the particle distribution in the tails was visually
similar. The remaining cluster had stightly larger size in the
multigrid simulation but the difference was within 7% {at the
halt-mass radius).

Comparison simulations of mergers in tidal fields were also
made. Such mergers are probably common in groups of galax-
ies. The simulations involved the merger of two stellar systems
in the central tidal field. The initial system was like that of the
previous except that the second of the identical galaxies was
placed on an orbit designed to cause the two to merge. The
impact parameter of the collision was not quite zero, being
approximately the half-mass radius of the galaxy.

During the collision the core of the outer galaxy swung
almost a complete rotation around the other unti! finally coalesc-
ing into one central peak. Over this time almost half of the
outer galaxy was thrown off. Again, the two simulation methods
produced similar systems. The multigrid simulation atlowed

471 particles to escape while 451 particles escaped in the direct
summation simulation. Despite the frequent regridding needed
in the multigrid simulation, energy was conserved to 4.2%. The
most noticeable difference between the two simulations was
that the resulling core was a little larger for the muligrid
simulation: The half-mass radius of the merger remnant in
the multigrid simulation was 20% larger than that of the PP
simulation. The results of these simulations were sufficiently
intriguing that we intend to pursue a systematic study of the
merger of galaxies in tidal fields further in the near future.

4. FURTHER DEVELOPMENTS AND CONCLUSIONS

4.1, Further Developments

The current simulation program can easily handle simulations
of systems with 100,000 particles in multiple subgrids. Simula-
tions of 1000 time-steps take 11 CPU hours on the MIPS 120
{which is roughly a 2 Mﬁop\ machine). The method is ideal for
systems containing several galaxies and/or stellar clusters and
a background of distributed particles.

The current implementation is suitable for simulations of
systems where there is at most one preferred set of axes. It is
also ideal for systems where it is necessary to have high resolu-
tion for a single core. Even so, the practical resolution increase
from the finest grid 1o the coarsest is limited to less than two
orders of magnitude (corresponding to six orders of magnitude
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FIG. 3. Cold collapse of 1/r density sphere showing initial and final system configurations. The dashed lines show the grid borders. For clarity, only a
few hundred of the 2000 particles are shown. The finat system is a prolate cllipsoid with axial ratios of 1.0:1.1:1.6,

in density contrast), due to the cumbersome boundary zones.
These boundary zones preclude gains greater than 3 or 4 be-
tween a grid and its next lowest subgrid. Even doubling the
resolution on a 33 subgrid leads to boundary zones that occupy
abowt half of the subgrid. Thus, the most important limitation
of the current program is the wastage of 2rid space in the
boundary zones. The emphasis of further development must be
to improve the boundary conditions so that the boundary zones
can be made narrower. Correction terms due to the fine-grid
density distribution near the boundary can be added to the
boundary potentiais. These terms could be applied to the bound-
ary near any particles in the buffer zone. These terms would
depend on the ratio of resolution of the grid to its parent, thetr
relative orientation, and, 1o a lesser degree, the relative offset.
This should reduce the image mass problem to a large extent.
While it does nothing for the continuity problem, the limitation
is due to the width of the buffer zone rather than the transition
zone, Work has started along these lines.

The regridding algorithm could do with further development.
The simple process of laying grids whenever density peaks
grow and removing grids whenever they diminish past a thresh-
old level frequently leads to continual changing of grid sizes
and resolutions when the system densities fluctuate across the
threshold levels. A smoothing process would reduce the sensi-
tivity to small random temporal fluctuations.

The generalization of the code to allow various grid orienta-
tions is fairly simpie provided they do not overlap. If grids are
allowed to overlap, the simple structures of a grid tree and a
linked list of masses for each grid break down. It would no
longer be possible to identify a single grid to which a particle
belongs and in some cases a subgrid may be covered by two
or more parent grids. In the latter case, the boundary conditions
of the subgrid become particularly awkward. So long as no
grid is allowed to lie over the boundary of a coarser grid, a grid
tree structure can be maintained and the boundary conditions are
no more of a problem than previously.
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FIG. 4. Collision and merger of two Plummer models starting from a head-on parabolic trajectory. Each Plummer sphere has 5000 particles although, for
clarity, only a few hundred are shown here: (a) original system: (b). (¢}, and {d) are X-¥, ¥-Z, and Z-X projections of the final system, The dashed lines show
the grid horders. During the simulation the two subgrids around the original spheres coalesce into one rectangvlar grid.

The problem of multiple particle lists can be solved if true
dynamic allocation is available since that would permit lists of
lists, allowing a particle to belong to multiple grids. Fortran
does not have this capability. Further development of this kind
in this language would require that this capability be simulated
by dynamic subarray allocation in the form currently used for
-the grid meshes but with proper *‘garbage collection’ and free
fist handling.

However, it might not be necessary to solve these complica-
tions if a seiective Brandt multigrid method were incorporated,
The normal Brandt multigrid solver refines the solving mesh
over the whole solution space. By selectively refining regions of
high density, the Brandt multigrid process could be incorporated
with our multigrid method. The coupling of the solutions of
the potential fields on each of the grids might reduce the discon-
linuity in the forces at the grid boundaries. If this approach

were to eliminate the need for boundary zones, then the presence
of many abutting subgrids would not be a difficulty.

As demonstrated by Table |, the time taken to calculate the
forces dominates until the number of particles approaches 10
per grid cell, even for very small grids. Thus, little computa-
tional time is wasted if all the particles on a grid, indeed on
all grids, are moved with a common time-step. However, for
systems with strong density peaks, accuracy within these peaks
demands a much smaller time-step than for the general field.
However, execution times could be reduced even further if each
grid had a separate time-step, so long as the boundary conditions
could be exfrapolated from previous coarse grid frames. The
density peaks of a system could be evolved with the necessary
time-step for accuracy without wasting computational time by
over-resolving the evolution on the main grid.

Further development could be made of direct summation
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FIG. 5, Tidal stripping in a central force field. A King model with the tidal radius set by the background potential is in a circular orbit. The system has
2000 particles of which 363 are stripped over 1.3 orbits. Shown are snapshots with the viewing axis perpendicular to the plane of the motion. Note that the
movement of the subgrids follows the moving King sysiem: (a) is the onginal system; (b), {c). and (d} are later 1imes.

routines. For example, globular cluster simulations require that
the core be treated in a manner that does not eliminate the
collisional process. Thus, a system that uses a grid for the
envelope and PP summation for the core would be ideal for
globular cluster evolution studies. If the time-step were allowed
to vary from grid to grid and if two and three body regularization
were included for the core regions, core coilapse and the forma-
tion of binary pairs and the subsequent cluster heaiing could
be followed.

4.2, Conclusions

In the previous sections it has been shown that the use of
selective refinement of grids can be used to improve the resolu-
tion of forces and hence the accuracy of results in N-body
systems. The method is most useful for the simulation of colli-
sionless systems in which the density is such that a number of

distinct subsystems exist. The separation of the solving space
into subregions also allows for parts of the system to be handled
in a different manner than the field.

The method is not designed for collisional systems, since
the necessary accuracy with faster run-times can be achieved
by tree codes and P°M methods. However, the multigrid
method can be adapted to allow direct summation methods
on leaf grids, which would make the code good at handling
globular cluster evolution, which most grid systems cannot
handle.

The method has been compared o a direct suimmation method
with good agreement. For 100,000 particles the multigrid
method reduces the computational time over direct methods by
three orders of magnitude while one to two orders of magnitude
are saved over a single grid system with the same resolution
of the finest subgrid. Tree codes are the moest competitive but



MULTIGRID GRAVITATIONAL SIMULATIONS

still the multigrid method is significantly faster for the particular
systems studied.

There still needs to be further development on the details
and coding as discussed earlier. The boundary conditions
and zones pose the greatest difficulties and any further
development must address this problem. Incorporating a
selective Brandt multigrid solver into the code may solve
this dilemma. I not, further effort should also be made for
solving the problem of laying overlapping gnids. Also, more
study needs to be done to create a more sophisticated
regridding algorithm.

Currently the program can be used for simulations of gal-
axy—galaxy interactions, gas-free galaxy collisions. It is ideal
tor studying the merger of galaxies in tidal fields and the evolu-
tion of groups and clusters of galaxies. The improvements
listed above, it successful, would allow the code to follow
the structures that develop in elongated or flattened systems,
including cosmological simulations. If a pressure component
were added to the force calculations, as with fluid dynamics
codes, the structures in dissipational disk galaxies could also
be modeled.
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